Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 969: 176457, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395375

RESUMO

Neuropeptide FF (NPFF) plays a critical role in various physiological processes through the activation of neuropeptide FF receptor 1 and 2 (NPFFR1 and NPFFR2). Numerous evidence has indicated that NPFF exhibits opposite opioid-modulating effects on opioid-induced analgesia after supraspinal and spinal administrations, while the detailed role of NPFFR1 and NPFFR2 remains unclear. In this study, we employed pharmacological and genetic inhibition of NPFFR to investigate the modulating roles of central NPFFR1 and NPFFR2 in opioid-induced analgesia and hyperalgesia, using a male mouse model of acute fentanyl-induced analgesia and secondary hyperalgesia. Our findings revealed that intrathecal (i.t.) injection of the nonselective NPFFR antagonist RF9 significantly enhanced fentanyl-induced analgesia, whereas intracerebroventricular (i.c.v.) injection did not show the same effect. Moreover, NPFFR2 deficient (npffr2-/-) mice exhibited stronger analgesic responses to fentanyl compared to wild type (WT) or NPFFR1 knockout (npffr1-/-) mice. Intrathecal injection of RF9 in npffr1-/- mice also significantly enhanced fentanyl-induced analgesia. These results indicate a crucial role of spinal NPFFR2 in the enhancement of opioid analgesia. Contrastingly, hyperalgesia induced by fentanyl was markedly reversed in npffr1-/- mice but remained unaffected in npffr2-/- mice. Similarly, i.c.v. injection of the selective NPFFR1 antagonist RF3286 effectively prevented fentanyl-induced hyperalgesia in WT or npffr2-/- mice. Notably, co-administration of i.c.v. RF3286 and i.t. RF9 augmented fentanyl-induced analgesia while reducing hyperalgesia. Collectively, these findings highlight the modulating effects of blocking spinal NPFFR2 and supraspinal NPFFR1 on fentanyl-induced analgesia and hyperalgesia, respectively, which shed a light on understanding the pharmacological function of NPFF system in future studies.


Assuntos
Analgesia , Hiperalgesia , Camundongos , Masculino , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Dor , Receptores de Neuropeptídeos/genética
2.
J Med Chem ; 67(1): 272-288, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38118143

RESUMO

The cyclic peptide c[d-Lys2, Asp5]-DN-9 has recently been identified as a multifunctional opioid/neuropeptide FF receptor agonist, displaying potent analgesic activity with reduced side effects. This study utilized Tyr-c[d-Lys-Gly-Phe-Asp]-d-Pro-NH2 (0), a cyclic hexapeptide derived from the opioid pharmacophore of c[d-Lys2, Asp5]-DN-9, as a chemical template. We designed, synthesized, and characterized 22 analogs of 0 with a single amino acid substitution to investigate its structure-activity relationship. Most of these cyclic hexapeptide analogs exhibited multifunctional activity at µ and δ opioid receptors (MOR and DOR, respectively) and produced antinociceptive effects following subcutaneous administration. The lead compound analog 15 showed potent agonistic activities at the MOR, κ opioid receptor (KOR), and DOR in vitro and produced a strong and long-lasting analgesic effect through peripheral MOR and KOR in the tail-flick test. Further biological evaluation identified that analog 15 did not cause significant side effects such as tolerance, withdrawal, or reward liability.


Assuntos
Analgésicos Opioides , Analgésicos , Analgésicos Opioides/uso terapêutico , Relação Estrutura-Atividade , Analgésicos/farmacologia , Receptores Opioides kappa/metabolismo , Peptídeos Cíclicos/química , Receptores Opioides mu/agonistas
3.
J Med Chem ; 66(24): 17138-17154, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38095323

RESUMO

Our previous study reported the multifunctional agonist for opioid and neuropeptide FF receptors DN-9, along with its cyclic peptide analogues c[D-Cys2, Cys5]-DN-9 and c[D-Lys2, Asp5]-DN-9. These analogues demonstrated potent antinociceptive effects with reduced opioid-related side effects. To develop more stable and effective analgesics, we designed, synthesized, and evaluated seven hydrocarbon-stapled cyclic peptides based on DN-9. In vitro calcium mobilization assays revealed that most of the stapled peptides, except 3, displayed multifunctional agonistic activities at opioid and neuropeptide FF receptors. Subcutaneous administration of all stapled peptides resulted in effective and long-lasting antinociceptive activities lasting up to 360 min. Among these stapled peptides, 1a and 1b emerged as the optimized compounds, producing potent central antinociception following subcutaneous, intracerebroventricular, and oral administrations. Additionally, subcutaneous administration of 1a and 1b caused nontolerance antinociception, with limited occurrence of constipation and addiction. Furthermore, 1a was selected as the final optimized compound due to its wider safety window compared to 1b.


Assuntos
Analgésicos Opioides , Oligopeptídeos , Analgésicos Opioides/efeitos adversos , Oligopeptídeos/química , Analgésicos/química , Peptídeos/química , Receptores de Neuropeptídeos/agonistas , Encéfalo , Receptores Opioides mu/agonistas
4.
Adv Sci (Weinh) ; 10(28): e2302519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37612810

RESUMO

The development of self-healing conductive hydrogels is critical in electroactive nerve tissue engineering. Typical conductive materials such as polypyrrole (PPy) are commonly used to fabricate artificial nerve conduits. Moreover, the field of tissue engineering has advanced toward the use of products such as hyaluronic acid (HA) hydrogels. Although HA-modified PPy films are prepared for various biological applications, the cell-matrix interaction mechanisms remain poorly understood; furthermore, there are no reports on HA-modified PPy-injectable self-healing hydrogels for peripheral nerve repair. Therefore, in this study, a self-healing electroconductive hydrogel (HASPy) from HA, cystamine (Cys), and pyrrole-1-propionic acid (Py-COOH), with injectability, biodegradability, biocompatibility, and nerve-regenerative capacity is constructed. The hydrogel directly targets interleukin 17 receptor A (IL-17RA) and promotes the expression of genes and proteins relevant to Schwann cell myelination mainly by activating the interleukin 17 (IL-17) signaling pathway. The hydrogel is injected directly into the rat sciatic nerve-crush injury sites to investigate its capacity for nerve regeneration in vivo and is found to promote functional recovery and remyelination. This study may help in understanding the mechanism of cell-matrix interactions and provide new insights into the potential use of HASPy hydrogel as an advanced scaffold for neural regeneration.

5.
ACS Appl Mater Interfaces ; 15(35): 41385-41402, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37606339

RESUMO

Effective repair and functional recovery of large peripheral nerve deficits are urgent clinical needs. A biofunctional electroactive scaffold typically acts as a "bridge" for the repair of large nerve defects. In this study, we constructed a biomimetic piezoelectric and conductive aligned polypyrrole (PPy)/polydopamine (PDA)/poly-l-lactic acid (PLLA) electrospun fibrous scaffold to improve the hydrophilicity and cellular compatibility of PLLA and restore the weakened piezoelectric effect of PDA, which is beneficial in promoting Schwann cell differentiation and dorsal root ganglion neuronal extension and alignment. The aligned PPy/PDA/PLLA fibrous scaffold bridged the sciatic nerve of Sprague-Dawley rats with a 10 mm deficit, prevented autotomy, and promoted nerve regeneration and functional recovery, thereby activating the calcium and AMP-activated protein kinase signaling pathways. Therefore, electroactive fibrous scaffolds exhibit great potential for neural tissue regeneration.


Assuntos
Polímeros , Pirróis , Ratos , Animais , Ratos Sprague-Dawley , Regeneração Nervosa , Nervo Isquiático
6.
Arch Virol ; 168(2): 39, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609933

RESUMO

The disease caused by Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the major causes of death of individuals with acquired immunodeficiency syndrome (AIDS). Development of anti-KSHV drugs is thus crucial. In this study, we investigated the effect of parthenolide (PTL) on the proliferation and NF-κB signaling pathway of KSHV-infected cells. iSLK.219 and KSHV-infected SH-SY5Y cells (SK-RG) were treated with PTL, TaqMan real-time quantitative PCR was used to determine the number of copies of the KSHV genome, and mRNA and protein expression of KSHV genes were analyzed by real-time PCR and immunocytochemistry. A cell viability test was used to measure cell proliferation, and flow cytometry was used to examine the effect of the drug on the cell cycle. Cyclin D1, CDK6, CDK4, and NF-κB-related proteins, including IKKß, P-p65, and P-IKB-α, were detected by Western blot. The results showed that PTL altered the morphology of the cells, reduced the KSHV copy number, and suppressed the production of ORF50, K8.1, and v-GPCR mRNA and the LANA, ORF50, and K8.1 proteins. It blocked the G1 phase in iSLK.219 cells and decreased the levels of cyclin D1, CDK6, and CDK4 as well as the levels of NF-κB signaling proteins, including IKKß, P-p65, and P-IKB-α. Together, these results suggest that PTL is a candidate drug that can decrease KSHV pathogenicity by suppressing cell proliferation and inhibiting the NF-κB signaling pathway in KSHV-infected cells.


Assuntos
Herpesvirus Humano 8 , Neuroblastoma , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/genética , Ciclina D1/metabolismo , Quinase I-kappa B/metabolismo , Transdução de Sinais , Proliferação de Células , RNA Mensageiro/metabolismo
7.
Int J Biol Macromol ; 222(Pt B): 1948-1962, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202331

RESUMO

Poor wound healing is a very common clinical problem, so far there is no completely satisfactory treatment. Electropsun nanofibrous wound dressings may provide an ideal structure to improve wound healing. Therefore, development of nanofibrous wound dressings with rapid hemostasis, antibacterial and tissue regenerative multi-functions has been a hotspot in the field of skin tissue engineering. In this work, polydopamine (PDA) and polypyrrole (PPy) were uniformly coated onto the surface of poly(l-lactide) (PLLA) nanofibers by in-situ polymerization, forming a novel PPy/PDA/PLLA three-layer core-shell structure. The homogeneously coated PPy and PDA two layers could significantly increase the hydrophilicity, conductivity, near-infrared photothermal antibacterial property, the speed of wound hemostasis, antioxidant capacity and reactive oxygen species (ROS) scavenging capacity, respectively. In addition, PPy/PDA/PLLA nanofibers showed good biocompatibility. Rat wound healing model confirmed that PPy/PDA/PLLA nanofibers could significantly accelerate wound repair in vivo. Thus, this novel nanofibrous wound dressing is a promising candidate for clinical wound healing.


Assuntos
Nanofibras , Ratos , Animais , Nanofibras/química , Polímeros/química , Pirróis/farmacologia , Cicatrização , Antibacterianos
8.
PeerJ ; 10: e13233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444864

RESUMO

Background: We aimed to investigate the effects of miR-34a-5p on c-fos regulation mediating the malignant behaviors of SH-SY5Y cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Methods: The KSHV-infected (SK-RG) and uninfected SH-SY5Y parent cells were compared for differentially expressed miRNAs using transcriptome sequencing. Then miR-34a-5p was upregulated in SK-RG cells by the miRNA mimics transfection. Cell proliferation ability was determined by MTT and plate clone assays. The cell cycle was assessed by flow cytometry analysis, and CDK4, CDK6, cyclin D1 levels were determined by Western blot analysis. The migration behavior was detected by wound healing and transwell assays. The protein levels of MMP2 and MMP9 were measured by Western blot analysis. The regulation of c-fos by miR-34a-5p was detected by the dual-luciferase reporter gene assay. Rescue assays were carried out by upregulating c-fos in miR-34a-5p-overexpressing SK-RG cells. KSHV DNA copy numbers and relative virus gene expressions were detected. Xenograft tumor experiments and immunohistochemistry assays were further used to detect the effects of miR-34a-5p. Results: miR-34a-5p was lower in SK-RG cells. Restoration of miR-34a-5p decreased cell proliferation and migration, leading to a G1 cell cycle arrest and down-regulation of CDK4/6, cyclin D1, MMP2, MMP9. KSHV copy number and expression of virus gene including latency-associated nuclear antigen (LANA), replication and transcription activator (RTA), open reading frame (K8.1), and KSHV G protein-coupled receptor (v-GPCR) were also reduced. Furthermore, c-fos is the target of miR-34a-5p, while enhanced c-fos weakened cellular behaviors of miR-34a-5p-overexpressing cells. Xenograft experiments and immunohistochemistry assays showed that miR-34a-5p inhibited tumor growth and virus gene expression. Conclusion: Upregulated miR-34a-5p in KSHV-infected SH-SY5Y cells suppressed cell proliferation and migration through down-regulating c-fos. miR-34a-5p was a candidate molecular drug for KSHV-infected neuronal cells.


Assuntos
Herpesvirus Humano 8 , MicroRNAs , Neuroblastoma , Humanos , Ciclina D1 , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , MicroRNAs/genética , Animais
9.
Cancer Cell Int ; 21(1): 577, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717617

RESUMO

BACKGROUND: The cancer caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection is one of the major causes of death in AIDS patients. Some patients have neurological symptoms, which appear to be associated with KSHV infection, based on the neurotropic tendency of this virus in recent years. The objectives of this study were to investigate the effects of KSHV infection on neuronal SH-SY5Y cells and to identify differentially expressed genes. METHODS: KSHV was collected from islk.219 cells. Real-time PCR was used to quantify KSHV copy numbers. KSHV was used to infect SH-SY5Y cells. The KSHV copy number in the supernatants and mRNA levels of latency-associated nuclear antigen (LANA), ORF26, K8.1 A, and replication and transcriptional activator (RTA) were detected by real-time PCR. Proteins were detected by immunohistochemistry. The effect of KSHV infection on cell proliferation was detected by MTT and Ki-67 staining. Cell migration was evaluated by Transwell and wound healing assays. The cell cycle was analyzed by flow cytometry. The expression of CDK4, CDK5, CDK6, cyclin D1, and p27 were measured by western blotting. The levels of cell cycle proteins were re-examined in LANA-overexpressing SH-SY5Y cells. Transcriptome sequencing was used to identify differentially expressed genes in KSHV-infected cells. The levels of Notch signaling pathway proteins were measured by western blotting. RNA interference was used to silence Notch1 and proliferation were analyzed again. RESULTS: SH-SY5Y cells were successfully infected with KSHV, and they maintained the ability to produce virions. KSHV-infected SH-SY5Y expressed LANA, ORF26, K8.1 A, and RTA. After KSHV infection, cell proliferation was enhanced, but cell migration was suppressed. KSHV infection accelerated the G0/G1 phase. CDK4, CDK5, CDK6, and cyclin D1 expression was increased, whereas p27 expression was decreased. After LANA overexpression, CDK4, CDK6 and cyclin D1 expression was increased. Transcriptome sequencing showed that 11,258 genes were upregulated and 1,967 genes were downregulated in KSHV-infected SH-SY5Y. The Notch signaling pathway played a role in KSHV infection in SH-SY5Y, and western blots confirmed that Notch1, NICD, RBP-Jĸ and Hes1 expression was increased. After silencing of Notch1, the related proteins and cell proliferation ability were decreased. CONCLUSIONS: KSHV infected SH-SY5Y cells and promoted the cell proliferation. KSHV infection increased the expression of Notch signaling pathway proteins, which may have been associated with the enhanced cell proliferation.

10.
Mater Sci Eng C Mater Biol Appl ; 128: 112264, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474823

RESUMO

Injectable self-healing hydrogels of natural polysaccharides that mimic the extracellular matrix to promote cellular growth are attractive materials for wound healing. Here, a novel hydrogel was fabricated based on carboxymethyl chitosan (CS) and aldehyde functionalized sodium alginate via Schiff base reaction. To enhance the hydrogel's properties, carboxymethyl-functionalized polymethyl methacrylate (PMAA) short nanofibers were obtained through sodium hydroxide-treated polymethyl methacrylate nanofibers, and added to a CS solution. Gelation time was determined for different hydrogels including 0-5 mg/mL PMAA short nanofibers. The nanofiber hydrogels were tested for their injectability and self-healing abilities and were demonstrated to be easily injectable with excellent self-healing abilities. Additionally, in vitro cytocompatibility experiments, good interaction between the cultured cells and hydrogels was seen. Further, the polysaccharide hydrogel containing short PMMA nanofibers significantly facilitated wound healing in rats compared with the polysaccharide hydrogel and control groups. Thus, the developed hydrogel has great potential for wound healing applications.


Assuntos
Quitosana , Nanofibras , Alginatos , Animais , Hidrogéis , Polissacarídeos , Ratos , Cicatrização
11.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805568

RESUMO

Despite the existence of many attempts at nerve tissue engineering, there is no ideal strategy to date for effectively treating defective peripheral nerve tissue. In the present study, well-aligned poly (L-lactic acid) (PLLA) nanofibers with varied nano-porous surface structures were designed within different ambient humidity levels using the stable jet electrospinning (SJES) technique. Nanofibers have the capacity to inhibit bacterial adhesion, especially with respect to Staphylococcus aureus (S. aureus). It was noteworthy to find that the large nano-porous fibers were less detrimentally affected by S. aureus than smaller fibers. Large nano-pores furthermore proved more conducive to the proliferation and differentiation of neural stem cells (NSCs), while small nano-pores were more beneficial to NSC migration. Thus, this study concluded that well-aligned fibers with varied nano-porous surface structures could reduce bacterial colonization and enhance cellular responses, which could be used as promising material in tissue engineering, especially for neuro-regeneration.


Assuntos
Antibacterianos/farmacologia , Nanofibras/química , Células-Tronco Neurais/citologia , Engenharia Tecidual/métodos , Animais , Antibacterianos/química , Materiais Biocompatíveis/química , Diferenciação Celular , Movimento Celular , Proliferação de Células , Escherichia coli/efeitos dos fármacos , Expressão Gênica , Camundongos , Células-Tronco Neurais/fisiologia , Poliésteres/química , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Engenharia Tecidual/instrumentação , Tecidos Suporte , Difração de Raios X
12.
Environ Sci Pollut Res Int ; 24(35): 26881-26892, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25631737

RESUMO

The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m-2 (origin) to 69.58 mg m-2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m-2 day-1, respectively. The mean net primary productivity was 290.24 mg C m-2 day-1. The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO3--N, and NH4+-N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.


Assuntos
Monitoramento Ambiental/métodos , Eutrofização , Sedimentos Geológicos/química , Rios/química , Biomassa , China , Clorofila/análise , Clorofila A , Ecossistema , Lagos/química , Nitrogênio/análise
13.
Asia Pac J Public Health ; 23(3): 307-14, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-19625323

RESUMO

Metabolic syndrome (MS) is most important because of its association with subsequent development of cardiovascular diseases. However, few studies about the prevalence of MS among hospital employees had been published.The aims of our study were to examine the prevalence of MS and associated factors. The up-to-date health examination data of 1,400 hospital employees of a medical center in North Taiwan were included, and MS was defined according to the criteria that were promulgated by the National Department of Health. The overall prevalence of MS was 10.3% (21.8% males, 7.0% females). Associated factors included male gender, aging, low education, administrative employees, abnormal hemoglobin concentration, and abnormal liver function indexes. According to our study, the prevalence of MS in hospital employees was lower than the general population, and the findings could be a reference to make more efficient health-promotion programs to lower the prevalence of MS in hospital employees.


Assuntos
Síndrome Metabólica/epidemiologia , Recursos Humanos em Hospital/estatística & dados numéricos , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Taiwan/epidemiologia
14.
BMC Bioinformatics ; 5: 191, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15585062

RESUMO

BACKGROUND: Expression microarrays are increasingly used to characterize environmental responses and host-parasite interactions for many different organisms. Probe selection for cDNA microarrays using expressed sequence tags (ESTs) is challenging due to high sequence redundancy and potential cross-hybridization between paralogous genes. In organisms with limited genomic information, like marine organisms, this challenge is even greater due to annotation uncertainty. No general tool is available for cDNA microarray probe selection for these organisms. Therefore, the goal of the design procedure described here is to select a subset of ESTs that will minimize sequence redundancy and characterize potential cross-hybridization while providing functionally representative probes. RESULTS: Sequence similarity between ESTs, quantified by the E-value of pair-wise alignment, was used as a surrogate for expected hybridization between corresponding sequences. Using this value as a measure of dissimilarity, sequence redundancy reduction was performed by hierarchical cluster analyses. The choice of how many microarray probes to retain was made based on an index developed for this research: a sequence diversity index (SDI) within a sequence diversity plot (SDP). This index tracked the decreasing within-cluster sequence diversity as the number of clusters increased. For a given stage in the agglomeration procedure, the EST having the highest similarity to all the other sequences within each cluster, the centroid EST, was selected as a microarray probe. A small dataset of ESTs from Atlantic white shrimp (Litopenaeus setiferus) was used to test this algorithm so that the detailed results could be examined. The functional representative level of the selected probes was quantified using Gene Ontology (GO) annotations. CONCLUSIONS: For organisms with limited genomic information, combining hierarchical clustering methods to analyze ESTs can yield an optimal cDNA microarray design. If biomarker discovery is the goal of the microarray experiments, the average linkage method is more effective, while single linkage is more suitable if identification of physiological mechanisms is more of interest. This general design procedure is not limited to designing single-species cDNA microarrays for marine organisms, and it can equally be applied to multiple-species microarrays of any organisms with limited genomic information.


Assuntos
Etiquetas de Sequências Expressas , Genoma , Análise em Microsséries , Penaeidae/genética , Projetos de Pesquisa , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , DNA Complementar/genética , Variação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...